(1)CCD探测器响应。各生产商提供原始硅探测器响应曲线,但这只是影响光谱幅度值的部分因素。在CCD上,海洋光纤光谱增加了一个镀层以破坏掉结构上由SIO2形成的光学腔。这样便极大的减小了各个波长下的光谱数据幅度不一致的情况。
(2)紫外响应。海洋光纤光谱增加了一个磷镀层。可以根据生产商提供的数据,为自己的系统探测器响应提供比较好的近似。
(3)光纤衰减。 在可见区,各波长下衰减比较平坦,但在紫外区急剧衰减;在近红外区,水吸收带750nm-900nm会影响光纤衰减,会有光谱衰减曲线。a光栅衍射效率。所有刻划及全息光栅,在特定波长区都会优化一阶光谱,取决于闪耀波长等因素。海洋光学提供14种光栅:每种都有其特定衍射效率。使用这些光栅图表来比较衍射效率;b光线采集器件。采样光学器件有其特定的光谱特性,比如用于样品池上的准直透镜。这些是简单的色差透镜,波长不同,焦距不同,可以查看UV样品池透射曲线来查看这些色差;c光源及样品。光源及样品有他们特定的光谱响应。若光源自身作为样品,则测量的正是其光谱响应。若用于透射、反射实验,必须考虑光源的光谱响应。如海洋提供的LS-1卤钨灯光源的光谱。
(4)其它因素。CCD设计及电子等特性也会影响灵敏度,例如,探测器的电压信号包含一些补偿诸如暗电流及0点放大称之为“暗光谱”。这些值随像素点而变化,必须要从CCD像元中扣除。另外,不同像素点响应值也会不同,因此数据标准化,必须逐一像素进行校正。(称之为固定噪声),唯一有效可行的考虑所有因素的方法是进行校正实验及通过比对样品光谱与参考光谱来标准化数据。
a.%透射(i)或%反射(i)=[S(i)-D(i)]/[R(i)-D(i)],其中S是CCD像素点(i)上的样品光强值,D是像素点(i)上的暗噪声值,R是像素点(i)上的参考光强值。
b. 吸光度(i)=-log[T(i)]
c. 能量I(i)= B(i)[T(i)],其中B是标准辐射光谱值。